

Investigating decision accountability & trustworthiness

How fair were COVID19 restrictions?

Edward Abel University of Southern Denmark

Sajid Siraj University of Leeds, UK

Covid-19 Restrictions

- Almost 7 *million* confirmed Covid-19 Deaths¹
- Countries reacted to Covid-19 differently
- But many locked down the whole country during "1st Waves"
- As the pandemic progressed Countries' responses evolved

¹https://covid19.who.int

UK Covid Tired System

- UK government tackled its "2nd wave" with a tiered system
- Different areas of England each assigned a *Tier* level 1-4

• Factors to determine tier level for each area:

UK Covid Tired System

How fair were COVID19 restrictions? SDU -

• Complaints of inconsistency and opacity in tier decisions

Dominance Based Rough Sets Approach (DRSA)

- Utilizing historic data relating to
 - Multiple criteria
 - Resulting decision (class label)
- To produce set of *IF* \rightarrow *THEN* rules of patterns in the data

Observation	Number of Cases	Rate of change	Positivity Rate	Tier
x_1	195	2.48	8.05	3
x_2	92	2.45	7.89	2
x_3	237	-2.74	8.94	2
x_4	515	2.82	1.43	3
x_5	528	7.54	5.3	3
x_6	434	1.65	5.41	2
x_7	143	-3.15	8.01	1
x_8	75	3.2	5.25	2
x_9	269	2.33	1.71	1
x_{10}	131	3.28	1.03	1

Rough Sets Data Driven Analysis

- Set of Rules in the form of: *IF* → *THEN*
- Highlighting
 - Criteria thresholds that result in certain outcomes
 - Boundaries between possible decision outcomes
- IF "No. of Cases" > x : THEN → Tier 2 or more
- IF "No. of Cases" > y : THEN → Tier 3 or more

- Such ruleset results can be used for:
 - Insights and explainability
 - Determine classification outcome on new unseen data

Rough Sets Data Driven Analysis

- Set of Rules in the form of: *IF* → *THEN*
- IF "No. of Cases" > x : THEN \rightarrow Tier 2 or more

Rough Sets Data Driven Analysis

- SDU
- Subset data into different geographical areas
- Create separate rule sets from each data subset

- Comparisons where different rulesets share the "same rule"
- Relate to same criteria and resulted in the same tier level
- Area 1: IF "No. of Cases" > x : THEN → TIER 3 or more
- Area 2: IF "No. of Cases" > y : THEN \rightarrow TIER 3 or more
- Given consistent application of data driven approach
- And utilisation of just criteria data to make Tier decisions
- Should expect similar boundaries to move from Tier to Tier

- Slicing overall dataset into segments:
 - "North" and "South" of England
 - "North", "South without London", and "London"
 - The 9 separate regions of England
- Comparison of rulesets
- Find *shared rules*
- Collate together all shared rules

- SDU∻
- Slicing as: "North", "South without London", & "London"

- Overall inconsistency between North & South of England
- Suggesting the south treated more leniently
- Drilling down inconsistency driven mostly by London
- Suggesting London specifically treated more leniently
- Suggesting...
 - Inconsistent utilization of the data to derive decisions?
 - Additional implicit criteria? (e.g., economic concerns)

DRSA for Fairness Analysis

- Here we explored our approach for evaluating the fairness of the UK's Covid Tired restriction of movement system
- Approach could be utilised to explore fairness in other domains
- Slicing data by attribute that should not be impacting decisions
 - For our covid data the attribute of geographical area
 - Age in recruitment decisions
 - Gender in Examination Grade

Investigating decision accountability & trustworthiness

How fair were COVID19 restrictions?

Edward Abel University of Southern Denmark

Sajid Siraj University of Leeds, UK

Interactive Decision Tool

- Future work exploring interactive user tool
- Interactively define slicing attribute and value subsets etc.

Data Pipeline

Data Sparsity

- Disjointed coverage of Tiers in data overall and in region segments
- Less resulting comparable rules than domains with higher coverage

At Least Results – Upward rules

• North, South without London, and London

Representative Rules

- In reality may have the "same" rule multiple times in a ruleset
- Just with different strengths (and different criteria values)

London Ruleset Extract

Antecedent	Consequent	Strength
(Number of Cases $\geq = 160$) and (Positivity Rate $\geq = 13.8$)	at least T2	27.76
(Number of Cases $\geq = 166$) and (Positivity Rate $\geq = 13.7$)	at least T2	33.5
(Number of Cases $>= 180$) and (Positivity Rate $>= 29.6$)	at least T2	62.67
(Number of Cases $\geq = 180$) and (Positivity Rate $\geq = 28.2$)	at least T2	73.02
(Number of Cases $>= 184$) and (Positivity Rate $>= 27.6$)	at least T2	77.76

- Aggregation of such rules into a single "representative rule"
- Via weighted averaging proportional to the rule strength
- Any other prominent aggregation approach could be used
- Facilitates then having 1-1 comparisons between rulesets

Representative Rules

London Ruleset Extract

Antecedent		Consequent	Strength
(Number of Cases $>=$	= 160) and (Positivity Rate $>= 13.8$)	at least T2	27.76
(Number of Cases $>=$	= 166) and (Positivity Rate $>= 13.7$)	at least T2	33.5
(Number of Cases $>=$	= 180) and (Positivity Rate $>= 29.6$)	at least T2	62.67
(Number of Cases $>=$	= 180) and (Positivity Rate \geq 28.2)	at least T2	73.02
(Number of Cases $>=$	= 184) and (Positivity Rate $>= 27.6$)	at least T2	77.76
Region	Antecedent		Consequent
London	(Number of Cases $=> 177.40$) and (Positivity	m Rate => 25.13)	at least T2
North	(Number of Cases $=> 146.04$) and (Positivity	r Rate => 19.09)	at least T2

The North Ruleset Extract

Antecedent	Consequent	$\mathbf{Strength}$
(Number of Cases $>= 142$) and (Positivity Rate $>= 12.1$)	at least T2	28.5
(Number of Cases $>= 140$) and (Positivity Rate $>= 13.1$)	at least T2	34.5
(Number of Cases $>= 151$) and (Positivity Rate $>= 25.3$)	at least T2	65.4